Рефераты по медицине

Физиология органа зрения

ТЕМА: ФИЗИОЛОГИЯ ОРГАНА ЗРЕНИЯ.

Трансоформация световой энергии в сетчатке осуществляется в результате процессов жизнедеятельности рецепторов — палочек и колбочек, включающих в себя фотохимические реакции разрушения и восстановления родопсина в тесной связи с обменом веществ. Продукты химических превращений в фоторецепторах, а также возникающие при этом электрические потенциалы служат раздражающим фактором для других слоев сетчатки, где возникают импульсы возбуждения, несущие зрительную информацию к ЦНС. Возбуждение от палочек и колбочек передается на биполярные и ганглиозные клетки сетчатки. Непрерывные фотохимический процесс (синтез родопсина) невозможен без наличия витаминов А и В2, АТФ, никотинамида и др. При недостатке в организме этих веществ нарушаются такие зрительные функции, как светоощущение , адаптация, развивается гемералопия (куриная слепота). Однако прцоесс восприятия , как правило, не ограничивается зрением, но предполагает осязательные, вкусовые ощущения. Процессы зрительного восприятия, протекающие в глазу, являются неотъемлемой частью деятельности мозга. Они тесно связаны с мышлением.

Вследствие ограниченной скорости свет ( 3 на 10 10 м/с) и определенной задержки нервных импульсов, поступающих в мозг, человек видит прошлое (исчезнувшее). За одну секунду световой луч успевает более 7 раз промчатся вокруг Земли.

Воспринимающая свет сетчатка в функциональном отношении может быть разделена на центральную (область пятня сетчатки) и периферическую (вся остальная поверхность сетчатки). Соответственно этому различают центральное и периферическое зрение. Кроме того, выделяют еще характер зрения (монокулярное, бинокулярное).

Макс Шульц выдвинул теорию двойственности зрения о распределении обязанностей между палочками (их около 13 млн) и колбочками (7 млн). Центральный аппарат сетчатки (колбочки) обеспечивают дневное зрение и цветоощущение, а периферический (палочки) — ночное (скотопическое), или сумеречное (мезоскопическое) зрение (светоощущение, темновая адаптация).

1. ретиномоторная реакция — заключается в том, что в зависимости от степени и интенсивности светового потока колбочки выходят на первый план при ярком свете и наоборот , а свет попадает на все элементы.

2. фотохимическая реакция — связана с разложением родопсина и иодопсина. Для того, чтобы они постоянно восстанавливались необходимо постоянное поступление питательных веществ и наличия магиня, чтобы было время для отдыха.

3. электрическая реакция. При разложение родопсина и иодопсина возникают положительные и отрицательные ионы, которые образуют поля, результатом чего является возникновение разности потенциалов, что , по теории Лазарева, является пусковым механизмом для возникновения зрительных образов в коре.

1. острота зрения (центральное зрение)

2. поле зрения (периферическое зрение)

Острота зрения — способность человеческого глаза различать раздельно две светящиеся точки, расположенные на максимальном расстоянии от глаза и минимальном расстоянии между собой.

Анатомические особенности макулярной области:

· зрительная ось проецируется в макулу

· в макулярной области находятся лишь одни колбочки

· каждой колбочке из макулы соответствет одна «своя» индивидуальная биполярная клетка, а на периферии такой картины не наблюдается

· в макулярной области сетчатая оболочка истончена, что необходимо для улучшения ее трофики

Угол зрения образован крайнми точками предмета и узловой точкой глаза.

При угле зрения в 1 градус величина изображения на сетчатке равна 4 на 10 -3 , то есть 4 мкм, а диаметр колбочки также равен 0.002 — 0.0045 мм. Это соответствие подтверждаетмнениео том, что для раздельного восприятия двух точек необходимо , чтобы два таких элемента (колбочки) были разделены хотя бы одним элементом, на который не падает луч свет. Однако острота зрения, равная 1, не является предельной. Существуют народности и племена, у которых острота зрения достигает 6 и более единиц.

Для определения остроты зрения используются таблицы, которые построены по десятичной системе. В них самые мелкие знаки видны под углом, равным 5 градусов с расстояния в 5 м. Если эти знаки различаются обследуемым, то по формуле Снеллена visus = d/D, в которое d — расстояние, с которого пациент реально видит строчку, D — расстояние, с котрого пациент должен был бы видеть строчку при остроте зрения 1, острота зрения равна 5/5, то есть 1.0. Это 10-я строка в таблице. Над ней 9-я строка знаков построена таким образом , что с 5 метров их можно прочесть при остроте зрения, меньшей на0.1,то есть 0.9 и т.д.

Visus измеряется в абстрактных единицах. Острота зрения зависит от диаметра колбочек на глазном дне, то есть чем он меньше, тем острота зрения лучше.

В случае , если исследуемый не видит верхнюю строчку с 5 м ( у него visus < 0.1), то проверяется счет пальцевсрасстояния до 0.5 м. Если пациент не видит и этого, то проверяется светоощущение (visus = 1/ ), которое может быть как с правильной, так и неправильной светопроекцией.

2. Положительные (воспринимаемые человеком) и отрицательные (невоспринимаемые).

4. Абсолютные — то есть в этой области больной вообще ничего не видит и относительные — больной продолжает видеть, но объеты расплываются.

Цветоощущение — функция колбочкового аппарата, определяется с помощью таблиц Рабкина.

Темновая адаптация — приспособление органа зрения к условиям пониженной освещенности. Нарушение темновой адаптации называют гемералопией (куриная слепота). Ее виды:

· симптоматическая — встречается при различных заболевания органа зрения (пигментная дистрофия сетчатки)

· эссенциальная — связана с дефицитом витамина А, заболеваниях печени (ксерофтальмия).

studentmedic.ru

/ Анатомия и физиология органа зрения

АНАТОМИЯ И ФИЗИОЛОГИЯ ОРГАНА ЗРЕНИЯ

Из всех органов чувств человека глаз всегда признавался наилучшим даром и чудеснейшим произведением творческой силы природы. Поэты воспевали его, ораторы восхваляли, философы прославляли его как мерило, указывающее на то, к чему способны органические силы, а физики пытались подражать ему как непостижимому образу оптических приборов. Г. Гельмгольц

Не глазом, а посредством глаза смотреть на мир умеет разум Авиценна

Первый, самый передний, видимый через роговицу, — радужка — имеет отверстие — зрачок. Радужка является как бы дном передней камеры. С помощью двух мышц радужки зрачок суживается и расширяется, автоматически регулируя величину светового потока, входящего в глаз, в зависимости от освещения. Цвет радужки зависит от различного содержания в ней пигмента: при малом его количестве глаза светлые (серые, голубые, зеленоватые), если его много — темные (карие). Большое количество радиально и циркулярно расположенных сосудов радужки, окутанных нежной соединительной тканью, образует своеобразный ее рисунок, рельеф поверхности.

В первом нейроне, обращенным к хориоидее, находятся светочувствительные клетки, фоторецепторы — палочки и колбочки, в которых под влиянием света происходят фотохимические процессы, трансформирующиеся в нервный импульс. Он проходит второй, третий нейрон, зрительный нерв и по зрительным путям попадает в подкорковые центры и далее в кору затылочной доли больших полушарий мозга, вызывая зрительные ощущения.

Хрусталик — вторая (после роговицы) преломляющая среда оптической системы глаза, располагается за радужной оболочкой и лежит в ямке стекловидного тела.

Оптическая система глаза состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Лучи света проходят прозрачные среды глаза, преломляются на поверхностях основных линз — роговицы и хрусталика и, фокусируясь на сетчатке, «рисуют» на ней изображение предметов внешнего мира (рис.2). Зрительный акт начинается с преобразования изображения фоторецепторами в нервные импульсы, которые после обработки нейронами сетчатки передаются по зрительным нервам в высшие отделы зрительного анализатора. Таким образом, зрение можно определить как субъективное восприятие объективного мира посредством света с помощью зрительной системы.

Выделяют следующие основные зрительные функции:центральное зрение (характеризуется остротой зрения) — способность глаза четко различать детали предметов, оценивается по таблицам со специальными знаками;

периферическое зрение (характеризуется полем зрения) — способность глаза воспринимать объем пространства при неподвижном положении глаза. Исследуется с помощью периметра, кампиметра, анализатора поля зрения и др;

цветовое зрение — это способность глаза воспринимать цвета и различать цветовые оттенки. Исследуется с помощью цветовых таблиц, тестов и аномалоскопов;

Полноценное функционирование органа зрения обеспечивается также вспомогательным аппаратом. Он включает в себя ткани орбиты (глазницы), веки и слезные органы, выполняющие защитную функцию. Движения каждого глаза осуществляются шестью наружными глазодвигательными мышцами.

Зрительный анализатор состоит из глазного яблока, строение которого схематично представлено на рис. 1, проводящих путей и зрительной коры головного мозга.

Рис.1.Схема строения глаза

9-диск зрительного нерва,

Вокруг глаза расположены три пары глазодвигательных мышц. Одна пара поворачивает глаз влево и вправо, другая — вверх и вниз, а третья вращает его относительно оптической оси. Сами глазодвигательные мышцы управляются сигналами, поступающими из мозга. Эти три пары мышц служат исполнительными органами, обеспечивающими автоматическое слежение, благодаря чему глаз может легко сопровождать взором всякий движущийся вблизи и вдали объект (рис. 2).

4-мышца, поднимающая верхнее веко;

5-нижняя косая мышца;

6-нижняя прямая мышца.

сосудистая оболочка — средняя,

Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки — ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением — при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.3).

Рис.3.Схематическое представление механизма аккомодации

справа-фокусировка на близкие предметы.

Хрусталик в глазу «подвешен» на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора Рис.5.

Ход лучей при различных видах клинической рефракции глаза

на удаленном предмете), то кольцо, образуемое ее телом, имеет большой диаметр, нити, держащие хрусталик, натянуты, и его кривизна, а следовательно и преломляющая сила, минимальна. Когда же ресничная мышца напрягается (при рассматривании близко расположенного объекта), ее кольцо сужается, нити расслабляются, и хрусталик становится более выпуклым и, следовательно, более сильно преломляющим. Это свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией.

Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате — сетчатой оболочке. Сетчатка глаза — передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток — фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом «желтом пятне». Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. «Желтым пятном» человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.

От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно «обслуживает» целую группу палочек.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки — на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных «помех» в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки — «слепом пятне». Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию — кору, где и происходит формирование зрительного образа (рис. 4).

Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора «работают» гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм (рис. 5).

Рис.4.Схема строения зрительного анализатора

2-неперекрещенные волокна зрительного нерва,

3-перекрещенные волокна зрительного нерва,

5-наружнее коленчатое тело,

Рис.5.Ход лучей при различных видах клинической рефракции глаза

Близорукость (миопия) — большей частью наследственно обусловленное заболевание, когда в период интенсивной зрительной нагрузки (учебы в школе, институте) вследствие слабости цилиарной мышцы, нарушения кровообращения в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Вследствие такого удлинения продольной оси глаза изображения предметов фокусируется не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам, пользуется очками с рассеивающими («минусовыми») линзами для уменьшения преломляющей силы хрусталика. Близорукость неприятна не тем, что требует ношения очков, а тем, что при прогрессировании заболевания возникают дистрофические очаги в оболочках глаза, приводящие к необратимой, некорригируемой очками потере зрения. Чтобы этого не допустить, нужно соединить опыт и знания врача-окулиста с настойчивостью и волей пациента в вопросах рационального распределения зрительной нагрузки, периодического самоконтроля за состоянием своих зрительных функций.

Дальнозоркость. В отличие от близорукости, это не приобретенное, а врожденное состояние — особенность строения глазного яблока: это либо короткий глаз, либо глаз со слабой оптикой. Лучи при этом состоянии собираются за сетчаткой. Для того, чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие — «плюсовые» очки. Это состояние может долго «скрываться» и проявиться в 20-30 лет и более позднем возрасте; все зависит от резервов глаза и степени дальнозоркости.

Правильный режим зрительного труда и систематические тренировки зрения позволят значительно отодвинуть срок проявления дальнозоркости и пользования очками. Пресбиопия (возрастная дальнозоркость). С возрастом сила аккомодации постепенно падает, за счет уменьшения эластичности хрусталика и цилиарной мышцы. Наступает состояние, когда мышца уже неспособна к максимальному сокращению, а хрусталик, потеряв эластичность, не может принять максимально шаровидную форму — в результате человек теряет возможность различать мелкие, близко расположенные предметы, стремится отодвинуть книгу или газету от глаз (чтобы облегчить работу цилиарных мышц). Для коррекции этого состояния назначаются очки для близи с «плюсовыми» стеклами. При систематическом соблюдении режима зрительного труда, активном занятии тренировкой глаз можно значительно отодвинуть время пользования очками для близи на многие годы.

Астигматизм — особый вид оптического строения глаза. Явление это врожденного или, большей частью приобретенного характера. Обусловлен астигматизм чаще всего неправильностью кривизны роговицы; передняя поверхность ее при астигматизме представляет собой не поверхность шара, где все радиусы равны, а отрезок вращающегося эллипсоида, где каждый радиус имеет свою длину. Поэтому каждый меридиан имеет особое преломление, отличающееся от рядом лежащего меридиана. Признаки болезни могут быть связаны с понижением зрения как вдаль, так и вблизь, снижением зрительной работоспособности, быстрой утомляемостью и болезненными ощущениями при работе на близком расстоянии.

Итак, мы видим, что наш зрительный анализатор, наши глаза — это исключительно сложный и удивительный дар природы. Весьма упрощенно можно сказать, что глаз человека — это, в конечном счете, прибор для приема и переработке световой информации и его ближайшим техническим аналогом является цифровая видеокамера. Относитесь к своим глазам бережно и внимательно, так же бережно, как Вы относитесь к своим дорогим фото- и видеоустройствам.

studfiles.net

Периферический отдел зрительной системы

Снаружи глаз виден как сферическое образование, прикрытое верхним и нижним веком и состоящее из склеры, коньюктивы, роговицы, радужной оболочки.

  • Склера представляет собой соединительную ткань белого цвета, окру­жающую глазное яблоко.
  • Коньюктива — прозрачная ткань, снабжен­ная кровеносными сосудами, которая на переднем полюсе глаза со­единяется с роговицей.
  • Роговица является прозрачным защитным на­ружным образованием, кривизна поверхности которого определяет особенности преломления света. Так, при неправильной кривизне роговицы возникает искажение зрительных изображений, называемое астигматизмом.
  • Радужная оболочка.Позади роговицы находится радужная оболочка, цвет которой зависит от пигментации составляющих ее клеток и их рас­пределения.
  • «Водянистая влага».Между роговицей и радужной оболочкой находится пе­редняя камера глаза, наполненная жидкостью — «водянистой влагой».
  • Зрачок. В центре радужной оболочки находится зрачок круглой формы, про­пускающий внутрь глаза свет после его прохождения через роговицу.
  • Хрусталик. Позади радужной оболочки расположены задняя камера глаза и хрусталик. Хрусталик — двояковыпуклая линза, расположенная в сумке, волокна которой соединены с ресничными мышцами и на­ружным сосудистым слоем сетчатки. Хрусталик может становится более плоским или более выпуклым в зависимости от расстояния между глазом и объектом. Изменение кривизны хрусталика называ­ется аккомодацией.
  • Стекловидное тело.Внутри глаза, позади хрусталика, находится стекловидное тело. Оно представляет собой коллоидный раствор гиалуроновой кислоты во внеклеточной жидкости.
  • Сетчатка — с нейроанатомической точки зрения — высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны (См. подробнее >>> Сетчатка глаза)
  • Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мыш­ца, суживающая зрачок — сфинктер — иннервируется парасимпати­ческим волокнами, мышца, расширяющая зрачок — дилататор — иннервируется симпатическими волокнами. Изменения диаметра зрач­ка меняют интенсивность светового раздражения незначительно — всего в 16- 17 раз (если учитывать, что диапазон интенсивности света изменяется в 16 млрд. раз). Реакция расширения зрачка до макси­мального диаметра — 7,5 мм — очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм до­стигается быстрее — всего за 5 секунд. Это значит, что основная функция зрачка состоит не в регуляции интенсивности света вообще, а в том, чтобы пропускать лишь тот свет, который попадает на центральную часть хрусталика, где фокусировка наиболее точная. Су­жение зрачка направлено на сохранение наиболее возможной при данных условиях освещенности глубины резкости.

    Роговица и коньюктива покрыты тонкой пленкой слезной жид­кости, секретируемой в слезных железах, расположенных в височ­ной части глазницы, над глазным яблоком. Слезы защищают рого­вицу и коньюктиву от высыхания.

  • Астигматизм (результат неравномерной кривизны рогови­цы) плохо корректируется даже сложными линзами. Для его ис­правления более пригодны контактные линзы, которые, плавая в слезной жидкости над роговицей, компенсируют ее отклонения от правильной формы.
  • Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку.

    • Близорукость. Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия).
    • Дальнозоркость. Если сетчатка рас­положена слишком близко к хрусталику и фокусировка хороша толь­ко при рассматривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия).
    • Близорукость и дальнозоркость кор­ректируются очками с вогнутыми и выпуклыми линзами соответ­ственно.

      Итак, оптическая система глаз обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. Ди­оптрический аппарат, состоящий из системы линз, передает на сетчатку резко уменьшенное изображение предметов (рис. 16.11).

      Рис. 16.11. Горизонтальный срез правого глаза

      Центральный отдел зрительной системы

      Зрительный нерв содержит около 800 тысяч волокон ганглиозных клеток сетчатки. Зрительные нервы обоих глаз перекрещиваются в области основания черепа, где около полумиллиона волокон зри­тельного нерва переходят на противоположную сторону. Остальные 300 тысяч волокон вместе с перекрещенными аксонами второго зрительного нерва образуют зрительный тракт.

      Нервные волокна зрительного тракта подходят к четырем структу­рам мозга:

      1. ядрам верхних бугров четверохолмия — средний мозг,
      2. ядрам латерального коленчатого тела — таламус,
      3. супрахиазмальным ядрам гипоталамуса,
      4. к глазодвигательным нервам.

      Ядра верхних бугров четверохолмия и латерального коленчатого тела являются конечными пунктами двух параллельных путей от ганглиозных клеток сетчатки: одна ветвь аксона ганглиозной клетки идет в латеральное коленчатое тело, другая — в верхнее двухолмие. Обе ветви сохраняют упорядоченную проекцию сетчатки. От перед­него двухолмия после переключения сигналы идут к крупному ядру таламуса — подушке.

      Аксоны клеток латерального коленчатого тела, проходящие в со­ставе зрительной радиации, проецируются к клеткам первичной зрительной коры (поле 17 или стриарная кора). Проекция зритель­ной ямки сетчатки — зоны максимальной остроты зрения — в 35 раз больше проекции участка такого же размера на периферии сет­чатки. Клетки поля 17 (стриарной коры) связаны с полями 18 и 19 (престриарная кора), так называемыми вторичными зрительными зонами. От этих зон идут проекции к подушке таламуса, куда по­ступает информация от верхних бугров четверохолмия. Кроме того, зрительные пути прослеживаются к лобной коре, они примыкают к ассоциативной коре.

      Рис. 16.14. Концентрические рецептивные поля в сетчатке и подкорковых зрительных центрах (А), прямоугольные и сложные рецептивные поля в зрительной коре (Б).

      Клетки латерального коленчатого тела, получающие основную афферентацию от сетчатки, имеют простые концентрические рецеп­тивные поля, как и ганглиозные клетки. Здесь проявляется бино­кулярное взаимодействие: волокна от обоих глаз распределены то­пографически правильно, послойно.

      В то же время небольшая часть клеток латерального коленчатого тела активируется от обоих зри­тельных нервов.

      Нейроны зрительной коры уже имеют не концентрические, а почти прямоугольные зрительные поля, некоторые из нейронов ре­агируют на определенную ориентацию (наклон) полосы — светлой или темной (рис. 16.14).

      В зрительной коре существуют два функционально различных типа клеток: простые и сложные.

    • Простые клеткиимеют рецептивное поле, состоящее из возбудительной и тормозной зоны, которые можно предсказать на основе исследования реакции клетки на ма­ленькое световое пятно.
    • Сложные клетки. Структуру рецептивного поля сложнойклетки невозможно установить сканированием светового пятнышка. Они служат «детекторами» угла, наклона или движения линий в поле зрения.

    В коре уже совершенно отчетлива бинокулярная кон­вергенция: в одной точке представлены симметричные поля зре­ния — справа и слева.

    Близко расположенные клетки зрительной коры «видят» только небольшую часть поля зрения. Лежащие друг под другом нейроны одной колонки коры реагируют на один и тот же стимул, опти­мальный по ориентации, наклону и направлению движения. В од­ной колонке могут располагаться как простые, так и сложные клет­ки.

    Простые клетки найдены в III и IV слоях, где заканчиваются таламические волокна. Сложные клетки расположены в более по­верхностных слоях коры 17 поля. В полях 18 и 19 зрительной коры простые клетки являются исключением, здесь расположены сложные и сверхсложные клетки. Последние реагируют, например, только на стимулы определенной ширины, длины и ориентации.

    Итак, от уровня к уровню зрительной системы происходит ус­ложнение рецептивных полей нейронов. Все рецептивные поля ор­ганизованы в виде возбудительных и тормозных зон. Концентричес­кие рецептивные поля, характерные для сетчатки и латерального коленчатого тела, уже не встречаются в коре. В зрительной системе, как и в других сенсорных системах, чем выше синаптический уро­вень, тем строже ограничены функции отдельных нейронов — де­текторов свойств.

    Для успешной работы системы распознавания зрительных образов очень важны движения глаз. Известно, что глаз человека приводится в движение шестью наружными мышцами. Относительно координат головы глаза двигаются горизонтально, вертикально и вокруг своей оси. Если оба глаза двигаются в одном направлении, такие движе­ния называются содружественными. При переводе взгляда с ближ­ней точки на дальнюю осуществляются дивергентные движения. При наклоне головы в сторону наблюдаются небольшие вращательные движения глаз.

    При взгляде на любой предмет глаза двигаются от одной точки фиксации к другой быстрыми скачками — саккадами. Длительность саккад от 10 до 80 мс, длительность периодов фиксации 150-300 мс. Медленные движения глаз реализуются при слежении за движущи­мися объектами — следящие движения.

    Движения глаз управляются центрами, которые находятся в об­ласти ретикулярной формации мозга и среднего мозга, в верхних буграх четверохолмия и в претектальной области. Все эти подкор­ковые центры координируются сигналами из зрительной, теменной и лобной коры, ответственными за программирование движений тела и оценки его положения в пространстве. Для наиболее тонкой регуляции глазодвигательных функций весьма существенны влияния мозжечка, сравнивающего тонический и фазный компоненты движе­ния при ориентации в пространстве.

    В процессе зрительного восприятия, особенно при слежении за движущимся объектом, возникает оптический нистагм, вызываемый движущимися оптическими стимулами и состоящий из чередования саккад и медленных следящих движений.

    Движения глаз имеют огромное значение для восприятия: при неподвижном глазном яб­локе восприятие изображения пропадает в связи с разложением пигмента и адаптацией фоторецепторов.

    Координированные движения глаз обеспечивают объединение ин­формации, идущей от обоих глаз в центры мозга. Особое значение для восприятия и координации движений играют нейроны переднего двухолмия. Они организованы в колонки, которые воспринимают сигналы, поступающие от одних и тех же участков полей зрения: активность нейронов этого отдела мозга, на которых конвергирует импульсация от правого и левого глаза, является пусковым меха­низмом для глазодвигательных нейронов. В коре обнаружены также колонки, связанные не только со зрительным восприятием, но и с сенсомоторной интеграцией. На высших уровнях зрительной систе­мы параллельно функционируют две системы анализа: одна опреде­ляет место предмета в пространстве, другая описывает его признаки. Конечные результаты параллельных процессов интегрируются и воз­никает законченный зрительный образ внешнего предметного мира.

    doctor-v.ru

    Физиология органа зрения

    Рефераты, курсовые, дипломные, контрольные (предпросмотр)

    Основной функцией зрительного анализатора человека является восприятие света, а также формы предметов окружающего мира и их положения в пространстве, свет вызывает сложные изменения в сетчатке, обуславлиющваюие так называемый зрительный акт. Таким образом, свет является адекватным раздражителем для органа зрения. Свет — магнитные колебания с определенной частотой (369-760 ммк — видимая часть спектра).

    Считается, что световые раздражения в первую очередь воспринимает родопсин (зрительный пурпур).

    Трансоформация световой энергии в сетчатке осуществляется в результате процессов жизнедеятельности рецепторов — палочек и колбочек, включающих в себя фотохимические реакции разрушения и восстановления родопсина в тесной связи с обменом веществ. Продукты химических превращений в фоторецепторах, а также возникающие при этом электрические потенциалы служат раздражающим фактором для других слоев сетчатки, где возникают импульсы возбуждения, несущие зрительную информацию к ЦНС. Возбуждение от палочек и колбочек передается на биполярные и ганглиозные клетки сетчатки. Непрерывные фотохимический процесс (синтез родопсина) невозможен без наличия витаминов А и В2, АТФ, никотинамида и др. При недостатке в организме этих веществ нарушаются такие зрительные функции, как светоощущение , адаптация, развивается гемералопия (куриная слепота). Однако прцоесс восприятия , как правило, не ограничивается зрением, но предполагает осязательные, вкусовые ощущения. Процессы зрительного восприятия, протекающие в глазу, являются неотъемлемой частью деятельности мозга. Они тесно связаны с мышлением.

    Вследствие ограниченной скорости свет ( 3 на 1010м/с) и определенной задержки нервных импульсов, поступающих в мозг, человек видит прошлое (исчезнувшее). За одну секунду световой луч успевает более 7 раз промчатся вокруг Земли.

    Наиболее совершенное зрительное восприятие возможно при условиии, если изображение предмета падает на область пятна сетчатки, особенно его центральной ямки. Периферическая часть сетчатки этой способностью обладает в значительно меньшей степени. Чем дальше от центра к периферии сетчатки проецируется изображение предмета, тем менее оно отчетливо.

    В сетчатой оболочке возникает 3 вида процессов:

    Функции органа зрения:

    4. темновая адаптация

    Острота зрения — способность человеческого глаза различать раздельно две светящиеся точки, расположенные на максимальном расстоянии от глаза и минимальном расстоянии между собой.

    Острота зреия позволяет детально изучить предметы. Острота зрения осуществляется макулярной областью (желтое пятно), с которой всегда совпадает зрительная ось глаза. Рядом с желтым пятном острота зрения снижается (если желтое пятно 1, то рядом 0.01).

    Анатомические особенности макулярной области:

    » зрительная ось проецируется в макулу

    » в макулярной области находятся лишь одни колбочки

    » каждой колбочке из макулы соответствет одна «своя» индивидуальная биполярная клетка, а на периферии такой картины не наблюдается

    » в макулярной области сетчатая оболочка истончена, что необходимо для улучшения ее трофики

    Установлено, что наименьший угол зрения, под которым глаз может различать 2 точки равен 1 градусу. Эта величина угла зрения принята за интернациональну единицу остроты зрения и в среднем составляет 1 единицу (1.0).

    При угле зрения в 1 градус величина изображения на сетчатке равна 4 на 10-3, то есть 4 мкм, а диаметр колбочки также равен 0.002 — 0.0045 мм. Это соответствие подтверждает мнение о том, что для раздельного восприятия двух точек необходимо , чтобы два таких элемента (колбочки) были разделены хотя бы одним элементом, на который не падает луч свет. Однако острота зрения, равная 1, не является предельной. Существуют народности и племена, у которых острота зрения достигает 6 и более единиц.

    Для определения остроты зрения используются таблицы, которые построены по десятичной системе. В них самые мелкие знаки видны под углом, равным 5 градусов с расстояния в 5 м. Если эти знаки различаются обследуемым, то по формуле Снеллена visus = d/D, в которое d — расстояние, с которого пациент реально видит строчку, D — расстояние, с котрого пациент должен был бы видеть строчку при остроте зрения 1, острота зрения равна 5/5, то есть 1.0. Это 10-я строка в таблице. Над ней 9-я строка знаков построена таким образом , что с 5 метров их можно прочесть при остроте зрения, меньшей на 0.1, то есть 0.9 и т.д.

    В случае , если исследуемый не видит верхнюю строчку с 5 м ( у него visus 0.1), то проверяется счет пальцев с расстояния до 0.5 м. Если пациент не видит и этого, то проверяется светоощущение (visus = 1/ ), которое может быть как с правильной, так и неправильной светопроекцией.

    Три основные причины, приводящие к снижению остроты зрения:

    1. Клиническая рефракция (близорукость, дальнозоркость, астигматизм).

    2. Помутнение оптических сред глаза (роговицы, хрусталика, стекловидного тела).

    3. Заболевания сетчатки и n. Opticus.

    Поле зрения — это тот объем пространства, который видит человеческий глаз при неподвижном поле взора и неподвижном положении головы (учитывая, что поле взора есть полез зрения обеих глаз). Поле зрения — это функция периферического отдела сетчатки, а именно палочкового аппарата.

    Физиологические границы поля зрения зависят от состояния зрительного аппарата глаза и зрительных центров.

    Скотома — выпадение части поля зрения. Различают:

    1. Физиологические (слепое пятно, скотомы вследствие прохождения сосудов), патологические.

    3. По расположению — центральные, парацентральные и периферические.

    М.В. Ломоносов в 1975 году впервые показал, что если в цветовом круге считать 3 света основными , то их попарным смешиванием (3 пары) можно создать любые другие (промежуточные в этих парах в цветовом круге). Это подтвердили Томас Юнг в Англии (1802), позднее Гельмгольц в Германии. Таким образом были заложены соновные трехкомпонентной теории цветового зрения. Существует 3 основных цвета: красный, зеленый, фиолетовый, при их смешивании можно получить любые цвета, за исключением черного.

    referator.com.ua

    Анатомия и физиология органа зрения

    Первый шаг в понимании глаукомы — это ознакомление со строением глаза и его функциями (рис. 1).

    Глаз (глазное яблоко, Bulbus oculi) имеет почти правильную округлую форму, размер его передне-задней оси примерно 24 мм, весит около 7 г и анатомически состоит из трех оболочек (наружной — фиброзной, средней — сосудистой, внутренней — сетчатки) и трех прозрачных сред (внутриглазной жидкости, хрусталика и стекловидного тела).

    Наружная плотная фиброзная оболочка состоит из задней, большей части — склеры, выполняющей скелетную, определяющую и обеспечивающую форму глаза функцию. Передняя, меньшая ее часть — роговица — прозрачна, менее плотная, не имеет сосудов, в ней разветвляется огромное количество нервов. Диаметр ее — 10-11 мм. Являясь сильной оптической линзой, она пропускает и преломляет лучи, а также выполняет важные защитные функции. За роговицей располагается передняя камера, заполненная прозрачной внутриглазной жидкостью.

    К склере изнутри глаза прилегает средняя оболочка — сосудистый, или увеальный тракт, состоящий из трех отделов.

    Второй, средний отдел — цилиарное тело — имеет вид кольца шириной до 6-7 мм, примыкающего к радужке и обычно недоступного визуальному наблюдению. В цилиарном теле различают две части: передняя отростчатая, в толще которой лежит цилиарная мышца, при сокращении ее расслабляются тонкие нити цинновой связки, удерживающей в глазу хрусталик, что обеспечивает акт аккомодации. Около 70 отростков цилиарного тела, содержащих капиллярные петли и покрытых двумя слоями эпителиальных клеток, продуцируют внутриглазную жидкость. Задняя, плоская часть цилиарного тела является как бы переходной зоной между цилиарным телом и собственно сосудистой оболочкой.

    Третий отдел — собственно сосудистая оболочка, или хориоидея — занимает заднюю половину глазного яблока, состоит из большого количества сосудов, располагается между склерой и сетчаткой, соответствуя ее оптической (обеспечивающей зрительную функцию) части.

    Внутренняя оболочка глаза — сетчатка — представляет собой тонкую (0,1-0,3 мм), прозрачную пленку: оптическая (зрительная) ее часть покрывает хориоидвю от плоской части цилиарного тела до места выхода зрительного нерва из глаза, неоптическая (слепая) — цилиарное тело и радужку, слегка выступая по краю зрачка. Зрительная часть сетчатки — это сложно организованная сеть из трех слоев нейронов. Функция сетчатки как специфического зрительного рецептора тесно связана с сосудистой оболочкой (хори-оидеей). Для зрительного акта необходим распад зрительного вещества (пурпура) под влиянием света. В здоровых глазах зрительный пурпур восстанавливается немедленно. Этот сложный фотохимический процесс восстановления зрительных веществ обусловлен взаимодействием сетчатки с хори-оидеей. Сетчатка состоит из нервных клеток, образующих три нейрона.

    Палочки в сетчатке расположены преимущественно по периферии и отвечают за светоощущение, сумеречное и периферическое зрение. Колбочки локализуются в центральных отделах сетчатки, в условиях достаточного освещения формируя цветоощущение и центральное зрение. Наивысшую остроту зрения обеспечивает область желтого пятна и центральная ямка сетчатки.

    Зрительный нерв формируется нервными волокнами — длинными отростками ганглиозных клеток сетчатки (3-й нейрон), которые, собираясь в отдельные пучки, выходят через мелкие отверстия в задней части склеры (решетчатую пластинку). Место выхода нерва из глаза называется диском зрительного нерва (ДЗН).

    В центре диска зрительного нерва образуется небольшое углубление — экскавация, которая не превышает 0,2-0,3 диаметра диска (Э/Д). В центре экскавации проходят центральная артерия и вена сетчатки. В норме диск зрительного нерва имеет четкие границы, бледно-розовую окраску, округлую или слегка овальную форму.

    Стекловидное тело занимает большую заднюю часть полости глаза и состоит из прозрачных волокон и гелеподобного вещества. Обеспечивает сохранение формы и объема глаза.

    Оптическая система глаза состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Лучи света проходят прозрачные среды глаза, преломляются на поверхностях основных линз — роговицы и хрусталика и, фокусируясь на сетчатке, "рисуют" на ней изображение предметов внешнего мира (рис.2). Зрительный акт начинается с преобразования изображения фоторецепторами в нервные импульсы, которые после обработки нейронами сетчатки передаются по зрительным нервам в высшие отделы зрительного анализатора. Таким образом, зрение можно определить как субъективное восприятие объективного мира посредством света с помощью зрительной системы.

    Выделяют следующие основные зрительные функции:

    центральное зрение (характеризуется остротой зрения) — способность глаза четко различать детали предметов, оценивается по таблицам со специальными знаками;

    светоощущение (темновая адаптация) — способность глаза воспринимать минимальное (пороговое) количество света. Исследуется адаптометром.

    Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три — основные:

    склера — внешняя оболочка,

    Хрусталик в глазу "подвешен" на тонких радиальных нитях, которые охватывают его круговым поясом. Наружные концы этих нитей прикрепляются к ресничной мышце. Когда эта мышца расслаблена (в случае фокусировки взора Рис.5.

    Лучи света фокусируются оптической системой глаза на особом рецепторном (воспринимающем) аппарате — сетчатой оболочке. Сетчатка глаза — передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование. В сетчатке позвоночных обычно различают 10 слоев нервных элементов, связанных между собой не только структурно-морфологически, но и функционально. Главным слоем сетчатки является тонкий слой светочувствительных клеток — фоторецепторов. Они бывают двух видов: отвечающие на слабый засвет (палочки) и отвечающие на сильный засвет (колбочки). Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им обнаруживаются предметы на периферии поля зрения, в том числе при низкой освещенности. Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом "желтом пятне". Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. "Желтым пятном" человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное, цветное зрение, при помощи которого воспринимаются цвета окружающего нас мира.

    От каждой светочувствительной клетки отходит нервное волокно, соединяющее рецепторы с центральной нервной системой. При этом каждую колбочку соединяет свое отдельное волокно, тогда как точно такое же волокно "обслуживает" целую группу палочек.

    Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки — на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных "помех" в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы. Нервные волокна со всей сетчатки собираются в зрительный нерв в особой области сетчатки — "слепом пятне". Оно расположено в том месте, где зрительный нерв выходит из глаза, и все, что попадает на эту область, исчезает из поля зрения человека. Зрительные нервы правой и левой стороны перекрещиваются, причем у человека и высших обезьян перекрещиваются лишь половина волокон каждого зрительного нерва. В конечном счете вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию — кору, где и происходит формирование зрительного образа (рис. 4).

    Окружающий нас мир мы видим ясно, когда все отделы зрительного анализатора "работают" гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость (миопия), дальнозоркость (гиперметропия), возрастная дальнозоркость (пресбиопия) и астигматизм (рис. 5).

    xreferat.com

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *

    *
    *